Binomial Theorem for Positive Integral Index

IMPORTANT

Binomial Theorem for Positive Integral Index: Overview

This topic covers concepts, such as, Finding Remainder Using Binomial Theorem, Finding Last Digit, Problems Related to Binomial Expansion (Sqrt(a) + b)^n & Sum of Coefficients in Binomial Expansion etc.

Important Questions on Binomial Theorem for Positive Integral Index

EASY
IMPORTANT

The remainder, when 7103 is divided by 17, is

EASY
IMPORTANT

The number of integral terms in the expansion of 312+514680 is equal to

EASY
IMPORTANT

If the 1011th term from the end in the binomial expansion of 4x5-52x2022 is 1024 times 1011th term from the beginning, then 32x is equal to

EASY
IMPORTANT

The sum, of the coefficients of the first 50 terms in the binomial expansion of 1-x100, is equal to

EASY
IMPORTANT

The coefficient of x5 in the expansion of 2x3-13x25 is 

MEDIUM
IMPORTANT

If the coefficients of x and x2 in (1+x)p(1-x)q are 4 and -5 respectively, then 2p+3q is equal to

MEDIUM
IMPORTANT

Let α be the constant term in the binomial expansion of x-6x32n,n15. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of x-n is λα, then λ is equal to ________.

MEDIUM
IMPORTANT

Fractional part of the number 4202215 is equal to

MEDIUM
IMPORTANT

If 1n+1 nCn+1n nCn-1+...+12 nC1+nC0=102310 then n is equal to

MEDIUM
IMPORTANT

Let the number (22)2022 + (2022)22 leave the remainder α when divided by 3 and β when divided by 7. Then (α2 + β2 ) is equal to

EASY
IMPORTANT

Let t denote the greatest integer t. if the constant term in the expansion of 3x2-12x57 is α then α is equal to _____

MEDIUM
IMPORTANT

If the coefficient of x7 in ax-1bx213 and the coefficient of x-5 in ax+1bx213 are equal, then a4b4 is equal to: 

EASY
IMPORTANT

Among the statements :

(S1) : 20232022-19992022 is divisible by 8.

(S2) : 13(13)n-11n-13 is divisible by 144 for infinitely many n

MEDIUM
IMPORTANT

25190-19190-8190+2190 is divisible by

MEDIUM
IMPORTANT

The absolute difference of the coefficients of x10 and x7 in the expansion of 2x2+12x11 is equal to

MEDIUM
IMPORTANT

If the coefficients of x7 in ax2+12bx11 and x-7 in ax-13bx211 are equal, then

MEDIUM
IMPORTANT

If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of 24+134n is 6:1, then the third term from the beginning is:

HARD
IMPORTANT

Find the remainder when 23200+19200 is divided by 49.

MEDIUM
IMPORTANT

Remainder when 22022 is divided by 15 is equal to 

EASY
IMPORTANT

For the expression 1-x100. Then sum of coefficients of first 50 terms is: